624 research outputs found

    Electro-optically tunable microring resonators in lithium niobate

    Full text link
    Optical microresonators have recently attracted a growing attention in the photonics community. Their applications range from quantum electro-dynamics to sensors and filtering devices for optical telecommunication systems, where they are likely to become an essential building block. The integration of nonlinear and electro-optical properties in the resonators represents a very stimulating challenge, as it would incorporate new and more advanced functionality. Lithium niobate is an excellent candidate material, being an established choice for electro-optic and nonlinear optical applications. Here we report on the first realization of optical microring resonators in submicrometric thin films of lithium niobate. The high index contrast films are produced by an improved crystal ion slicing and bonding technique using benzocyclobutene. The rings have radius R=100 um and their transmission spectrum has been tuned using the electro-optic effect. These results open new perspectives for the use of lithium niobate in chip-scale integrated optical devices and nonlinear optical microcavities.Comment: 15 pages, 8 figure

    QM/MM MD and Free Energy Simulations of G9a-Like Protein (GLP) and Its Mutants: Understanding the Factors that Determine the Product Specificity

    Get PDF
    Certain lysine residues on histone tails could be methylated by protein lysine methyltransferases (PKMTs) using S-adenosyl-L-methionine (AdoMet) as the methyl donor. Since the methylation states of the target lysines play a fundamental role in the regulation of chromatin structure and gene expression, it is important to study the property of PKMTs that allows a specific number of methyl groups (one, two or three) to be added (termed as product specificity). It has been shown that the product specificity of PKMTs may be controlled in part by the existence of specific residues at the active site. One of the best examples is a Phe/Tyr switch found in many PKMTs. Here quantum mechanical/molecular mechanical (QM/MM) molecular dynamics (MD) and free energy simulations are performed on wild type G9a-like protein (GLP) and its F1209Y and Y1124F mutants for understanding the energetic origin of the product specificity and the reasons for the change of product specificity as a result of single-residue mutations at the Phe/Tyr switch as well as other positions. The free energy barriers of the methyl transfer processes calculated from our simulations are consistent with experimental data, supporting the suggestion that the relative free energy barriers may determine, at least in part, the product specificity of PKMTs. The changes of the free energy barriers as a result of the mutations are also discussed based on the structural information obtained from the simulations. The results suggest that the space and active-site interactions around the ε-amino group of the target lysine available for methyl addition appear to among the key structural factors in controlling the product specificity and activity of PKMTs

    Cascaded logic gates in nanophotonic plasmon networks

    Get PDF
    Optical computing has been pursued for decades as a potential strategy for advancing beyond the fundamental performance limitations of semiconductor-based electronic devices, but feasible on-chip integrated logic units and cascade devices have not been reported. Here we demonstrate that a plasmonic binary NOR gate, a 'universal logic gate', can be realized through cascaded OR and NOT gates in four-terminal plasmonic nanowire networks. This finding provides a path for the development of novel nanophotonic on-chip processor architectures for future optical computing technologies

    Clinical research evidence of cupping therapy in China: a systematic literature review

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Though cupping therapy has been used in China for thousands of years, there has been no systematic summary of clinical research on it.</p> <p>This review is to evaluate the therapeutic effect of cupping therapy using evidence-based approach based on all available clinical studies.</p> <p>Methods</p> <p>We included all clinical studies on cupping therapy for all kinds of diseases. We searched six electronic databases, all searches ended in December 2008. We extracted data on the type of cupping and type of diseases treated.</p> <p>Results</p> <p>550 clinical studies were identified published between 1959 and 2008, including 73 randomized controlled trials (RCTs), 22 clinical controlled trials, 373 case series, and 82 case reports. Number of RCTs obviously increased during past decades, but the quality of the RCTs was generally poor according to the risk of bias of the Cochrane standard for important outcome within each trials. The diseases in which cupping was commonly employed included pain conditions, herpes zoster, cough or asthma, etc. Wet cupping was used in majority studies, followed by retained cupping, moving cupping, medicinal cupping, etc. 38 studies used combination of two types of cupping therapies. No serious adverse effects were reported in the studies.</p> <p>Conclusions</p> <p>According to the above results, quality and quantity of RCTs on cupping therapy appears to be improved during the past 50 years in China, and majority of studies show potential benefit on pain conditions, herpes zoster and other diseases. However, further rigorous designed trials in relevant conditions are warranted to support their use in practice.</p

    Genetic Variation of HvCBF Genes and Their Association with Salinity Tolerance in Tibetan Annual Wild Barley

    Get PDF
    The evaluation of both the genetic variation and the identification of salinity tolerant accessions of Tibetan annual wild barley (hereafter referred to as Tibetan barley) (Hordeum vulgare L. ssp. Spontaneum and H. vulgare L. ssp. agriocrithum) are essential for discovering and exploiting novel alleles involved in salinity tolerance. In this study, we examined tissue dry biomass and the Na+ and K+ contents of 188 Tibetan barley accessions in response to salt stress. We investigated the genetic variation of transcription factors HvCBF1, HvCBF3 and HvCBF4 within these accessions, conducting association analysis between these three genes and the respective genotypic salt tolerance. Salt stress significantly reduced shoot and root dry weight by 27.6% to 73.1% in the Tibetan barley lines. HvCBF1, HvCBF3 and HvCBF4 showed diverse sequence variation in amplicon as evident by the identification of single nucleotide polymorphisms (SNPs) and 3, 8 and 13 haplotypes, respectively. Furthermore, the decay of Linkage disequilibrium (LD) of chromosome 5 was 8.9 cM (r2<0.1). Marker bpb-4891 and haplotype 13 (Ps 610) of the HvCBF4 gene were significantly (P<0.05) and highly significantly (P<0.001) associated with salt tolerance. However, HvCBF1 and HvCBF3 genes were not associated with salinity tolerance. The accessions from haplotype 13 of the HvCBF4 gene showed high salinity tolerance, maintaining significantly lower Na+/K+ ratios and higher dry weight. It is thus proposed that these Tibetan barley accessions could be of value for enhancing salinity tolerance in cultivated barley

    Ginsenoside-Rg1 mediates a hypoxia-independent upregulation of hypoxia-inducible factor-1α to promote angiogenesis

    Get PDF
    Hypoxia-inducible factor (HIF-1) is the key transcription regulator for multiple angiogenic factors and is an appealing target. Ginsenoside-Rg1, a nontoxic saponin isolated from the rhizome of Panax ginseng, exhibits potent proangiogenic activity and has the potential to be developed as a new angiotherapeutic agent. However, the mechanisms by which Rg1 promotes angiogenesis are not fully understood. Here, we show that Rg1 is an effective stimulator of HIF-1α under normal cellular oxygen conditions in human umbilical vein endothelial cells. HIF-1α steady-state mRNA was not affected by Rg1. Rather, HIF-1α protein synthesis was stimulated by Rg1. This effect was associated with constitutive activation of phosphatidylinositol 3-kinase (PI3K)/Akt and its effector p70 S6 kinase (p70S6K), but not extracellular-signal regulated kinase 1/2. We further revealed that HIF-1α induction triggered the expression of target genes, including vascular endothelial growth factor (VEGF). The use of small molecule inhibitors LY294002 or rapamycin to inhibit PI3K/Akt and p70S6K activities, respectively, resulted in diminished HIF-1α activation and subsequent VEGF expression. RNA interference-mediated knockdown of HIF-1α suppressed Rg1-induced VEGF synthesis and angiogenic tube formation, confirming that the effect was HIF-1α specific. Similarly, the angiogenic phenotype could be reversed by inhibition of PI3K/Akt and p70S6K. These results define a hypoxia-independent activation of HIF-1α, uncovering a novel mechanism for Rg1 that could play a major role in angiogenesis and vascular remodeling
    corecore